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So : The opens of R*A will be of the form D .U where U is on open of A.
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In our excouple ,
D = [*) [Qp(x) , fund, system of neigh. of 0 : X[F) .pr .2p(x)

= ph . [p(x)[] .

continuation of the proof : 4 is continuous : Need "ID. Gull IUv
D is bounded by the choice of the topology - powerboundedness-> (a)
For (b) g exists uniquely as a ring home . We need g continuous .

Let E= (f(t)/f(si) IteTi)svoing GB is bounded & gLDI = E .
Fix USB open Subgroup

=> JV open subgroup [B st V.ECU5Wope subgroup A : Wef"(V
E odd

=> g(W .D) = g(W) .gIDIEV .EIU

Back to the example : Is Ziox : supposed to be conv· if A was complete i . e is Exil

topologically milpotent ? Xi- piXp(x)[*]pilixi but
= top. Milpotent in localization

.
Toxi EQp(x) ysQp(x)()

= Qp(x) (F) is not complete t

Two Questions :

(1) Does this non-arch. localization give f-adic ring if we start w/f-adic ring ?
(21 completion of f-adic rings.

Definition : Assume A -adicA(I) = completion ofAl
Completion for Xp(x)[*) with p-adic topology is Im [p(X)[)/pn so we should get

Qp(x) (f) = (1m2p(x)[=)/p)[-] .


